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A Framework for Modeling Emerging 
Diseases to Inform Management 

Technical Appendix 

Application of framework to hypothetical scenario. 

Scenario: Salamander chytridiomycosis, caused by a fungal pathogen, Batrachochytrium 

salamandrivorans, is detected from an unusual die-off occurrence in a U.S. Fish and Wildlife 

Refuge Complex in the Mid-Atlantic region of the United States. Park staff and visitors detected 

several dead and dying newts near a pond that is a popular fishing location. Currently, only one 

pond has been identified as containing infected eastern newts (Notophthalmus viridescens). At 

this time, a dozen specimens have been collected and all have tested positive for the fungus. The 

true population size of newts in the pond is unknown. There are at least three other potential 

breeding areas within 1 km of the infected pond. 

Pathogenicity: The fungus has been shown to cause high rates of mortality in susceptible 

salamander species and in particular newts (online Technical Appendix Table 3) (1). 

Environmental niche: The temperature and humidity niche of B. salamandrivorans is 

predicted to include large areas of the Mid-Atlantic (2,3). 

Taxonomic breadth of hosts: Most fungal diseases are taxa specific; therefore, the risk for 

spread of the disease to other taxa (mammals or birds) is likely low (4). 

Transmission pathway: Direct contact has been shown to be an effective transmission 

pathway for the fungus (1), but indirect transmission is possible with fungal spores potentially 

being carried by water, on fomites, and by other organisms (4). 

Social behavior/connectivity: In general, eastern newts live in metapopulations (i.e., 

small populations connected to the larger population through occasional dispersal events) (5). 

Gill et al. identified two movement periods in eastern newts: a movement to breeding ponds in 

spring and migration periods to terrestrial habitat in the fall (5). Though the literature on newt 

movements is sparse, Regosin et al. determined that fewer than 20% of the population traveled 
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more than 100 m from breeding ponds (6). However, Roe and Grayson found that efts (i.e., 

juvenile stages of newts) moved up to 50 m a night indicating the potential for longer distance 

movements (7). Finally, contact during breeding season (March–August) is increased for species 

with aggregate breeding behaviors (e.g., spotted salamanders) but may be reduced during other 

times of the year. 

 
Technical Appendix Table 1. Examples from the literature describing the use of different modeling frameworks to describe disease 
processes 

Model type Examples Software 

Occupancy 
 

chytrid fungus in amphibians (8) 
flea species presence on prairie dogs (9) 

parasites in birds (10) 
chytrid fungus in amphibians (11) 

disease dynamics in metapopulations (12) 
whirling disease in fish (13) 
insects and palm trees (14) 

Unmarked: https://cran.r-
project.org/web/packages/unmarked/index.html 

Presence: 
http://www.mbr-pwrc.usgs.gov/software/presence.html 

MARK: http://warnercnr.colostate.edu/~gwhite/mark/mark.htm 

Compartmental brucellosis in bison (15)  
chronic wasting disease in deer (16) 

macroparasites and wildlife (17) 
bacterial infections and possums (18) 
harvest effects on wildlife disease (19) 

West Nile virus and birds (20) 
control strategies and swine flu (21) 

dengue and mosquitoes (22) 

EpiModel: http://www.epimodel.org/ 
Outbreak Tools: https://cran.r-

project.org/web/packages/OutbreakTools/index.html 
simecol:https://cran.r-

project.org/web/packages/simecol/index.html 
Any ordinary differential equation solver: Matlab, Simulink, 

Excel, deSolve in R 
 

Diffusion 
 

rabies in foxes (23) 
foot and mouth disease in pigs (24) 

rabies in raccoons (25) 
pathogens and bumblebees (26) 

plague traveling waves (27) 
chronic wasting disease (28) 

spate: https://cran.r-project.org/web/packages/spate/index.html 
simecol: https://cran.r-

project.org/web/packages/simecol/index.html 

Agent-based 
 

parasite transmission in monkeys (29) 
rabies in foxes (30) 

swine fever in wild boar (31) 
territoriality and sociality of wolves (32) 
foot and mouth outbreak in cattle (33) 

NetLogo: http://ccl.northwestern.edu/netlogo/ or RNetlogo: 
http://rnetlogo.r-forge.r-project.org/ 

Ecolab: http://ecolab.sourceforge.net/ 
Flame: http://www.flame.ac.uk/ 

Pandora: http://www.bsc.es/computer-applications/pandora-
hpc-agent-based-modelling-framework 

Simecol: https://cran.r-
project.org/web/packages/simecol/index.html 

 
 
Technical Appendix Table 2. Detailed description of parameter estimates associated with each characteristic, and techniques 
associated with the estimation of those parameters 

Key parameters Specific parameters Techniques 

Pathogenicity Survival and reproduction of diseased and 
nondiseased hosts 

Occupancy of patches 
Population density in areas with and without 

disease 

Mark-recapture of diseased and uninfected hosts 
Visual counts of diseased and uninfected hosts 

Presence/nondetection of hosts in areas with and 
without disease 

Environmental niche Relationship of pathogen growth, virulence, 
and survival with environmental conditions 

such as temperature and humidity 

Laboratory studies to determine pathogen 
response to environmental conditions. 

Presence/nondetection of pathogen in field 
surveys: environmental DNA 

Taxonomic breadth of hosts Pathogenicity for multiple hosts Challenge experiments in the laboratory 
Field surveys to detect exposure or pathogen in 

multiple hosts 
Passive or active surveillance for pathogen 
presence, exposure, and related morbidity 

Transmission pathways Rate of transmission (if any) host to host, 
environment to host, vector to host, etc. 

Rates at which contacts result in host to host 
disease transmission 

Laboratory experiments fulfilling Koch’s postulates 
Field surveys to identify reservoirs and vectors 

Models to replicate observed dynamics 
Genetic studies of the pathogen 

Comparative genetics of potential hosts and 
vectors to pathogens 
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Key parameters Specific parameters Techniques 

Social behavior/contact 
networks 

Contact rates: rates at which individual 
species contact members of their own social 
group and other social groups, rates at which 

infectious animals move 
 

Identification of host genetic structure or nonlethal 
microbes in hosts 

Mark recapture: spatially-explicit and multistate 
Telemetry 

Proximity collars 
Observational studies 

Spatial patterns of nonlethal microbes in hosts 

 

 
Technical Appendix Table 3. Identification of key parameters for Batrachochytrium salamandrivorans, an emerging disease of 
salamanders* 

Key parameters Description Estimates 
Pathogenicity Disease is highly pathogenic for susceptible species (1). Mortality 0.90–1.00 
Environmental niche Current models indicate conditions for B. salamandrivorans exist 

throughout the Eastern seaboard (2,3). 
Probability environmental niche 
includes local populations = 1 

Probability niche includes all of species 
range 0.90–1.00 

Taxonomic breadth of 
hosts 

Current information indicates the probability is low that species 
outside of salamanders are affected. 

1% chance of infecting other taxa 

Social 
behavior/connectivity 

Spatial structure: salamanders in this area live in small isolated 
ponds (metapopulations). 

Movement patterns: salamander mobility is relatively limited (unlikely 
to travel more than a few hundred meters). Juveniles are the 

dispersing class and may travel farther. 
Social behavior: salamanders in ponds live in close proximity to one 

another during the breeding season. 

Probability of contact with infected host 
within the same pond is high (0.75–

1.00). 
Probability of contact with an infected 

host from another pond is likely a 
function of distance. 

Ponds connected by riparian areas 
facilitate movements. 

Transmission 
pathways 
 

There is much uncertainty surrounding transmission pathways. 
Direct contact can pass fungal spores between hosts, it is also 

possible that fungal spores can be passed from an individual to the 
environment or other organisms and then to other individuals. 

Possibly spores can be carried on fomites. 

Probability host-to-host contact leads to 
an infection is high (0.80–1.00). 

Probability host infection can occur from 
environment is low (0–0.10). 

*Ideally parameter estimates would represent the best guess estimates of multiple experts. 
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